Sodium /ˈsdiəm/[1] is a chemical element with symbol Na (from New Latin natrium) and atomic number 11. It is a soft, silver-white, highly reactive metal and is a member of the alkali metals; its only stable isotope is 23Na. The free metal does not occur in nature, but instead must be prepared from its compounds. It was first isolated by Humphry Davy in 1807 by the electrolysis of sodium hydroxide. Sodium is the sixth most abundant element in the Earth's crust, and exists in numerous minerals such as feldspars, sodalite and rock salt (NaCl). Many salts of sodium are highly water-soluble. Sodium ions have been leached by the action of water so that sodium and chlorine (Cl) are the most common dissolved elements by weight in the Earth's bodies of oceanic water.

Many sodium compounds are useful, such as sodium hydroxide (lye) for soap-making, and sodium chloride for use as a de-icing agent and a nutrient (edible salt). Sodium is an essential element for all animals and some plants. In animals, sodium ions are used against potassium ions to build up charges on cell membranes, allowing transmission of nerve impulses when the charge is dissipated. The consequent need of animals for sodium causes it to be classified as a dietary inorganic macro-mineral nutrient.



Sodium at standard temperature and pressure is a soft silvery metal, that oxidizes to grayish white unless immersed in oil or inert gas. Sodium can be readily cut with a knife, and is a good conductor of electricity. These properties change dramatically at elevated pressures: at 1.5 Mbar, the color changes from silvery metallic to black; at 1.9 Mbar the material becomes transparent, with a red color; and at 3 Mbar sodium is a clear and transparent solid. All of these high-pressure allotropes are insulators and electrides.[2]

When sodium or its compounds are introduced into a flame, they turn it yellow,[3] because the excited 3s electrons of sodium emit a photon when they fall from 3p to 3s; the wavelength of this photon corresponds to the D line at 589.3 nm. Spin-orbit interactions involving the electron in the 3p orbital split the D line into two; hyperfine structures involving both orbitals cause many more lines.[4]


File:Na-D-sodium D-lines-589nm.jpg

When freshly cut, sodium has a bright, silvery luster. If exposed to air, the surface rapidly tarnishes, darkening at first and then forming a white coating of sodium hydroxide and sodium carbonate.

Sodium is generally less reactive than potassium and more reactive than lithium.[5] Like all the alkali metals, it reacts exothermically with water, to the point that sufficiently large pieces melt to a sphere and may explode; this reaction produces caustic soda (sodium hydroxide) and flammable hydrogen gas. When burned in dry air, it mainly forms sodium peroxide as well as some sodium oxide. In moist air, sodium hydroxide results.[6] Sodium metal is highly reducing, with the reduction of sodium ions requiring −2.71 volts.[7] Hence, the extraction of sodium metal from its compounds (such as with sodium chloride) uses a significant amount of energy.[6] However, potassium and lithium have even more negative potentials.[8]


Main article: Isotopes of sodium

20 isotopes of sodium are known, but only 23Na is stable. Two radioactive, cosmogenic isotopes are the byproduct of cosmic ray spallation: 22Na with a half-life of 2.6 years and 24Na with a half-life of 15 hours; all other isotopes have a half-life of less than one minute.[9] Two nuclear isomers have been discovered, the longer-lived one being 24mNa with a half-life of around 20.2 microseconds. Acute neutron radiation, such as from a nuclear criticality accident, converts some of the stable 23Na in human blood to 24Na; by measuring the concentration of 24Na in relation to 23Na, the neutron radiation dosage of the victim can be calculated.[10]


23Na is created in the carbon-burning process in stars by fusing two carbon atoms together; this requires temperatures above 600 megakelvins and a star of at least three solar masses.[11] The Earth's crust contains 2.6% sodium by weight, making it the sixth most abundant element on Earth.[12] Because of its high reactivity, it is never found as a pure element. It is found in many different minerals, some very soluble, such as halite and natron, others much less soluble such as amphibole, and zeolite. The insolubility of certain sodium minerals such as cryolite and feldspar arises from their polymeric anions, which in the case of feldspar is a polysilicate. In the interstellar medium, sodium is identified by the D spectral line; though it has a high vaporization temperature, its abundance allowed it to be detected by Mariner 10 in Mercury's atmosphere.[13] Sodium has been detected in at least one comet; astronomers observing Comet Hale-Bopp in 1997 observed a sodium tail, which consisted of neutral atoms (not ions) and extended to some 50 million kilometres in length.[14]


File:NaCl polyhedra.png

Sodium compounds are of immense commercial importance, being particularly central to industries producing glass, paper, soap, and textiles.[15] The sodium compounds that are the most important include table salt (NaCl), soda ash (Na2CO3), baking soda (NaHCO3), caustic soda (NaOH), sodium nitrate (NaNO3), di- and tri-sodium phosphates, sodium thiosulfate (Na2S2O3·5H2O), and borax (Na2B4O7·10H2O).[16] In its compounds, sodium is usually ionically bonded to water and anions, and is viewed as a hard Lewis acid.[17]


Most soaps are sodium salts of fatty acids. Sodium soaps are harder (higher melting) soaps than potassium soaps.[16] Sodium chloride is extensively used for anti-icing and de-icing and as a preservative; sodium bicarbonate is mainly used for cooking. Along with potassium, many important medicines have sodium added to improve their bioavailability; although in most cases potassium is the better ion, sodium is selected for its lower price and atomic weight.[18]Sodium hydride is used as a base for various reactions (such as the aldol reaction) in organic chemistry, and as a reducing agent in inorganic chemistry.[19]

Aqueous solutionsEdit

Sodium tends to form water-soluble compounds, such as halides, sulfates, nitrates, carboxylates and carbonates. The main aqueous species are the aquo complexes [Na(H2O)n]+, where n = 4–6.[20] The high affinity of sodium for oxygen-based ligands is the basis of crown ethers; macrolide antibiotics, which interfere with Na+ transport in the infecting organism, are functionally related and more complex.Script error

Direct precipitation of sodium salts from aqueous solutions is rare, because sodium salts typically have a high affinity for water; an exception is sodium bismuthate (NaBiO3).[1] Because of this, sodium salts are usually isolated as solids by evaporation or by precipitation with an organic solvent, such as ethanol; for example, only 0.35 g/L of sodium chloride will dissolve in ethanol.[2] Crown ethers, like 15-crown-5, may be used as a phase-transfer catalyst.[3]

Sodium content in bulk may be determined by treating with a large excess of uranyl zinc acetate; the hexahydrate (Template:UO2)2ZnNa(CH3CO2)·6H2O precipitates and can be weighed. Caesium and rubidium do not interfere with this reaction, but potassium and lithium do.[4] Lower concentrations of sodium may be determined by atomic absorption spectrophotometry[5] or by potentiometry using ion-selective electrodes.[6]

Electrides and sodidesEdit

Like the other alkali metals, sodium dissolves in ammonia and some amines to give deeply colored solutions; evaporation of these solutions leaves a shiny film of metallic sodium. The solutions contain the coordination complex (Na(NH3)6)+, whose positive charge is counterbalanced by electrons as anions; cryptands permit the isolation of these complexes as crystalline solids. Cryptands, like crown ethers and other ionophores, have a high affinity for the sodium ion; derivatives of the alkalide Na are obtainable[7] by the addition of cryptands to solutions of sodium in ammonia via disproportionation.[8]

Organosodium compoundsEdit


Many organosodium compounds have been prepared. Because of the high polarity of the C-Na bonds, they behave like sources of carbanions (salts with organic anions). Some well known derivatives include sodium cyclopentadienide (NaC5H5) and trityl sodium ((C6H5)3CNa).[9]


Salt has been an important commodity in human activities, as shown by the English word salary, which derives from salarium, the wafers of salt sometimes given to Roman soldiers along with their other wages. In medieval Europe, a compound of sodium with the Latin name of sodanum was used as a headache remedy. The name sodium is thought to originate from the Arabic suda , meaning headache, as the headache-alleviating properties of sodium carbonate or soda were well known in early times.[10] The chemical abbreviation for sodium was first published by Jöns Jakob Berzelius in his system of atomic symbols,[11] and is a contraction of the element's New Latin name natrium, which refers to the Egyptian natron,[10] a natural mineral salt primarily made of hydrated sodium carbonate. Natron historically had several important industrial and household uses, later eclipsed by other sodium compounds. Although sodium, sometimes called soda, had long been recognised in compounds, the metal itself was not isolated until 1807 by Sir Humphry Davy through the electrolysis of sodium hydroxide.[12][13]

Sodium imparts an intense yellow color to flames. As early as 1860, Kirchhoff and Bunsen noted the high sensitivity of a sodium flame test, and stated in Annalen der Physik und Chemie:[14]

  1. REDIRECT Template:Pull quote

Commercial productionEdit

Enjoying rather specialized applications, only about 100,000 tonnes of metallic sodium are produced annually.[15] Metallic sodium was first produced commercially in 1855 by carbothermal reduction of sodium carbonate at 1100 °C,Script error in what is known as the Deville process:[1][2][3]

Na2CO3 + 2 C → 2 Na + 3 CO

A related process based on the reduction of sodium hydroxide was developed in 1886.[1]

Sodium is now produced commercially through the electrolysis of molten sodium chloride, based on a process patented in 1924.[4][5] This is done in a Downs cell in which the NaCl is mixed with calcium chloride to lower the melting point below 700 °C. As calcium is less electropositive than sodium, no calcium will be deposited at the cathode. This method is less expensive than the previous Castner process of electrolyzing sodium hydroxide.

Reagent-grade sodium in tonne quantities sold for about US$3.30/kg in 2009; lower purity metal sells for considerably less.Script error The market for sodium is volatile due to the difficulty in its storage and shipping; it must be stored under a dry inert gas atmosphere or anhydrous mineral oil to prevent the formation of a surface layer of sodium oxide or sodium superoxide. These oxides can react violently in the presence of organic materials. Smaller quantities of sodium cost far more, in the range of US$165/kg; the high cost is partially due to the expense of shipping hazardous material.[1]


Though metallic sodium has some important uses, the major applications of sodium use is in its many compounds; millions of tons of the chloride, hydroxide, and carbonate are produced annually.

Free elementEdit

Metallic sodium is mainly used for the production of sodium borohydride, sodium azide, indigo, and triphenylphosphine. Previous uses were for the making of tetraethyllead and titanium metal; because applications for these chemicals were discontinued, the production of sodium declined after 1970.[2] Sodium is also used as an alloying metal, an anti-scaling agent,[3] and as a reducing agent for metals when other materials are ineffective. Note the free element is not used as a scaling agent, ions in the water are exchanged for sodium ions. Sodium vapor lamps are often used for street lighting in cities and give colours ranging from yellow-orange to peach as the pressure increases.[4] By itself or with potassium, sodium is a desiccant; it gives an intense blue colouration with benzophenone when the desiccate is dry.[5] In organic synthesis, sodium is used in various reactions such as the Birch reduction, and the sodium fusion test is conducted to qualitatively analyse compounds.[6] Lasers emitting light at the D line, utilising sodium, are used to create artificial laser guide stars that assist in the adaptive optics for land-based visible light telescopes.Script error

Heat transferEdit

File:Phase diagram potassium sodium s l.svg

Liquid sodium is used as a heat transfer fluid in some fast reactors,[2] due to its high thermal conductivity and low neutron absorption cross section, which is required to achieve a high neutron flux; the high boiling point allows the reactor to operate at ambient pressure. Drawbacks of using sodium include its opacity, which hinders visual maintenance, and its explosive properties. Radioactive sodium-24 may be formed by neutron activation during operation, posing a slight radiation hazard; the radioactivity stops within a few days after removal from the reactor. If a reactor needs to be frequently shut down, NaK is used; due to it being liquid at room temperature, cooling pipes do not freeze. In this case, the pyrophoricity of potassium means extra precautions against leaks need to be taken. Another heat transfer application is in high-performance internal combustion engines with poppet valves, where valve stems partially filled with sodium are used as a heat pipe to cool the valves.

Biological roleEdit

Main article: Sodium in biology

In humans, sodium is an essential nutrient that regulates blood volume, blood pressure, osmotic equilibrium and pH; the minimum physiological requirement for sodium is 500 milligrams per day.[3] Sodium chloride is the principal source of sodium in the diet, and is used as seasoning and preservative, such as for pickling and jerky; most of it comes from processed foods.[4] The UL for sodium is 2.3 grams per day,[5] the threshold which could lead to hypertension when exceeded,[6] but on average people in the United States consume 3.4 grams per day.[7] Hypertension causes 7.6 million premature deaths worldwide each year.[8] (Note that salt contains about 39.3% sodium[9]—the rest being chlorine and other trace chemicals; thus the UL of 2.3g sodium would be about 5.9g, or 2.7ml of salt—about half a US teaspoon[10])

The renin-angiotensin system regulates the amount of fluids and sodium in the body. Reduction of blood pressure and sodium concentration in the kidney result in the production of renin, which in turn produces aldosterone and angiotensin, retaining sodium in the urine. Because of the increase in sodium concentration, the production of renin decreases, and the sodium concentration returns to normal.[11] Sodium is also important in neuron function and osmoregulation between cells and the extracellular fluid, their distribution mediated in all animals by Na+/K+-ATPase;[12] hence, sodium is the most prominent cation in extracellular fluid.[13]

Unusually low or high sodium levels in humans are recognized in medicine as hyponatremia and hypernatremia. These conditions may be caused by genetic factors, physical factors associated with ageing or illnesses involving vomiting or diarrhea.[14]

In C4 plants, sodium is a micronutrient that aids in metabolism, specifically in regeneration of phosphoenolpyruvate and synthesis of chlorophyll.[15] In others, it substitutes for potassium in several roles, such as maintaining turgor pressure and aiding in the opening and closing of stomata.[16] Excess sodium in the soil limits the uptake of water due to decreased water potential, which may result in wilting; similar concentrations in the cytoplasm can lead to enzyme inhibition, which in turn causes necrosis and chlorosis.[17] To avoid these problems, plants developed mechanisms that limit sodium uptake by roots, store them in cell vacuoles, and control them over long distances;[18] excess sodium may also be stored in old plant tissue, limiting the damage to new growth.


NFPA 704
"fire diamond"

Error: must specify an image in the first line


Redirect arrow without textmw:Help:Magic words#Other
This page is a soft redirect.- Redirect arrow without textmw:Help:Magic words#Other
This page is a soft redirect. style="background:#e0e0e0;" Redirect arrow without textmw:Help:Magic words#Other
This page is a soft redirect. The fire diamond hazard sign for sodium metal[19]

Care is required in handling elemental sodium, as it generates flammable hydrogen and caustic sodium hydroxide upon contact with water; powdered sodium may spontaneously explode in the presence of an oxidizer.Script error Excess sodium can be safely removed by hydrolysis in a ventilated cabinet; this is typically done by sequential treatment with isopropanol, ethanol and water. Isopropanol reacts very slowly, generating the corresponding alkoxide and hydrogen.[1] Fire extinguishers based on water accelerate sodium fires; those based on carbon dioxide and bromochlorodifluoromethane lose their effectiveness when they dissipate. An effective extinguishing agent is Met-L-X, which comprises approximately 5% Saran in sodium chloride together with flow agents; it is most commonly hand-applied with a scoop. Other materials include Lith+, which has graphite powder and an organophosphate flame retardant, and dry sand.

See alsoEdit


  1. Script error

External linksEdit

Template:Sodium compounds

Ad blocker interference detected!

Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.