FANDOM


A fertilizer (or fertiliser in British English) is any material of natural or synthetic origin (other than liming materials) that is applied to soils or to plant tissues (usually leaves) to supply one or more plant nutrients essential to the growth of plants.

The three main macronutrients are nitrogen (N), phosphorus (P), and potassium (K) - but not in their elemental form. Generally, their effects on plants are as follows.

N: Leaf growth

P: Development of roots, flowers, seeds, fruit

K: Strong stem growth, movement of water in plants, promotion of flowering and fruiting.

MechanismEdit

Fertilizers enhance the growth of plants. This goal is met in two ways, the traditional one being additives that provide nutrients. The second mode by which some fertilizers act is to enhance the effectiveness of the soil by modifying its water retention and aeration. This article, like most on fertilizers, emphasizes the nutritional aspect. Fertilizers typically provide, in varying proportions:[1]

The nutrients required for healthy plant life are classified according to the elements, but the elements are not used as fertilizers. Instead compounds containing these elements are the basis of fertilizers. The macronutrients are consumed in larger quantities and are present in plant tissue in quantities from 0.15% to 6.0% on a dry matter (DM) (0% moisture) basis. Plants are made up of four main elements: H, O, C, and N. C, H and O are widely available as H2O and CO2. Although nitrogen makes up most of the atmosphere, it is in a form that is unavailable to plants. Nitrogen is the most important fertilizer since nitrogen is present in proteins, DNA and other components (e.g., chlorophyll). To be nutritious to plants, nitrogen must be made available in a "fixed" form. Only some bacteria and their host plants (notably legumes) can fix atmospheric nitrogen (N2) by converting it to ammonia. Phosphate is required for the production of DNA and ATP, the main energy carrier in cells, as well as certain lipids.

Micronutrients are consumed in smaller quantities and are present in plant tissue on the order of parts-per-million (ppm), ranging from 0.15 to 400 ppm DM, or less than 0.04% DM.[2][3] These elements are often present at the active sites of enzymes that carry out the plant's metabolism. Because these elements enable catalysts (enzymes) their impact far exceeds their weight percentage.

ClassificationEdit

Fertilizers are classified in many ways. They are classified according to whether they provide a single nutrient (say, N, P, or K), in which case they are classified as "straight fertilizers." "Multinutrient fertilizers" (or "complex fertilizers") provide two or more nutrients, for example N and P. Fertilizers are also sometimes classified as inorganic (the topic of most of this article) vs organic. Inorganic fertilizers exclude carbon-containing materials except ureas. Organic fertilizers are usually (recycled) plant- or animal-derived matter. Inorganic are sometimes called synthetic fertilizers since various chemical treatments are required for their manufacture.[4]

Single nutrient ("straight") fertilizersEdit

The main nitrogen-based straight fertilizer is ammonia or its solutions. Ammonium nitrate (NH4NO3) is also widely used. About 15M tons were produced in 1981, i.e., several kilograms per person. Urea is another popular source of nitrogen, having the advantage that it is a solid and non-explosive, unlike ammonia and ammonium nitrate, respectively. A few percent of the nitrogen fertilizer market (4% in 2007)[5] is met by calcium ammonium nitrate (Ca(NO3)2•NH4NO3•10H2O).

The main straight phosphate fertilizers are the superphosphates. "Single superphosphate" (SSP) consists of 14–18% P2O5, again in the form of Ca(H2PO4)2, but also phosphogypsum (CaSO4 · 2 H2O). Triple superphosphate (TSP) typically consists of 44-48% of P2O5 and no gypsum. A mixture of single superphosphate and triple superphosphate is called double superphosphate. More than 90% of a typical superphosphate fertilizer is water-soluble.

Multinutrient fertilizersEdit

These fertilizers are the most common. They consist of two or more nutrient components.

Binary (NP, NK, PK) fertilizersEdit

Major two-component fertilizers provide both nitrogen and phosphorus to the plants. These are called NP fertilizers. The main NP fertilizers are monoammonium phosphate (MAP) and diammonium phosphate (DAP). The active ingredient in MAP is NH4H2PO4. The active ingredient in DAP is (NH4)2HPO4. About 85% of MAP and DAP fertilizers are soluble in water.

NPK fertilizersEdit

Main article: Labeling of fertilizer

NPK fertilizers are three-component fertilizers providing N, P, and K.

NPK rating is a rating system describing the amount of N, P, and K in a fertilizer. NPK ratings consist of three numbers separated by dashes (e.g., 10-10-10 or 16-4-8) describing the chemical content of fertilizers.[6][7] The first number represents the percentage of nitrogen in the product; the second number, P2O5; the third, K2O</sub>. Fertilizers do not actually contain P2O5 or K2O, but the system is a conventional shorthand for the amount of the phosphorus (P) or potassium (K) in a fertilizer. A 50-pound bag of fertilizer labeled 16-4-8 contains 8 pounds of nitrogen (16% of the 50 pounds) an amount of phosphorus and potassium equivalent to that in 2 pounds of P2O5 (4% of 50 pounds) and 4 pounds of K2O (8% of 50 pounds). Most fertilizers are labeled according to this N-P-K convention, though Australian convention, following an N-P-K-S system, adds a fourth number for sulfur.[8]

MicronutrientsEdit

The main micronutrients include sources of iron, manganese, molybdenum, zinc, and copper. As for the macronutrients, these elements are provided as water-soluble salts. Iron presents special problems because it converts to insoluble (bio-unavailable) compounds at moderate soil pH and phosphate concentrations. For this reason, iron is often administered as a chelate complex, e.g., the EDTA derivative. The micronutrient needs depend on the plant. For example, sugar beets appear to require boron, and legumes require cobalt.[9]

ProductionEdit

Nitrogen fertilizersEdit

Top users of nitrogen-based fertilizer[10]
Country Total N use

(Mt pa)

Amt. used for feed/pasture

(Mt pa)

China 18.7 3.0
U.S. 9.1 4.7
France 2.5 1.3
Germany 2.0 1.2
Brazil 1.7 0.7
Canada 1.6 0.9
Turkey 1.5 0.3
UK 1.3 0.9
Mexico 1.3 0.3
Spain 1.2 0.5
Argentina 0.4 0.1

All nitrogen fertilizers are made from ammonia (NH3), which is sometimes injected into the ground directly. The ammonia is produced by the Haber-Bosch process.[5] In this energy-intensive process, natural gas (CH4) supplies the hydrogen and the nitrogen (N2) is derived from the air. This ammonia is used as a feedstock for all other nitrogen fertilizers, such as anhydrous ammonium nitrate (NH4NO3) and urea (CO(NH2)2). Deposits of sodium nitrate (NaNO3) (Chilean saltpeter) are also found in the Atacama desert in Chile and was one of the original (1830) nitrogen-rich fertilizers used.[11] It is still mined for fertilizer.[12]

Phosphate fertilizersEdit

All phosphate fertilizers are obtained by extraction from minerals containing the anion PO43−. In rare cases, fields are treated with the crushed mineral, but most often more soluble salts are produced by chemical treatment of phosphate minerals. The most popular phosphate-containing minerals are referred to collectively as phosphate rock. The main minerals are fluorapatite Ca5(PO4)3F (CFA) and hydroxyapatite Ca5(PO4)3OH. These minerals are converted to water-soluble phosphate salts by treatment with sulfuric or phosphoric acids. The large production of sulfuric acid as an industrial chemical is primarily due to its use as cheap acid in processing phosphate rock into phosphate fertilizer. The global primary uses for both sulfur and phosphorus compounds relate to this basic process.

In the nitrophosphate process or Odda process (invented in 1927), phosphate rock with up to a 20% phosphorus (P) content is dissolved with nitric acid (HNO3) to produce a mixture of phosphoric acid (H3PO4) and calcium nitrate (Ca(NO3)2). This mixture can be combined with a potassium fertilizer to produce a compound fertilizer with the three macronutrients N, P and K in easily dissolved form.[13]

Potassium fertilizersEdit

Potash is a mixture of potassium minerals used to make potassium (chemical symbol: K) fertilizers. Potash is soluble in water, so the main effort in producing this nutrient from the ore involves some purification steps; e.g., to remove sodium chloride (NaCl), i.e. common salt. Sometimes potash is referred to as K2O, as a matter of convenience to those describing the potassium content. In fact potash fertilizers are usually potassium chloride, potassium sulfate, potassium carbonate, or potassium nitrate.[14]

Compound fertilizersEdit

Compound fertilizers, which contain N, P, and K, can often be produced by mixing straight fertilizers. In some cases, chemical reactions occur between the two or more components. For example monoammonium and diammonium phosphates, which provide plants with both N and P, are produced by neutralizing phosphoric acid (from phosphate rock) and ammonia (from a Haber facility):

NH3 + H3PO4 → (NH4)H2PO4
2 NH3 + H3PO4 → (NH4)2HPO4

Organic fertilizers Edit

Main article: Organic fertilizer
File:HomeComposting Roubaix Fr59.JPG
File:Krechty kompostarna.jpg

The main "organic fertilizers" are, in ranked order, peat, animal wastes, plant wastes from agriculture, and sewage sludge. In terms of volume, peat is the most widely used organic fertilizer. This immature form of coal confers no nutritional value to the plants, but improves the soil by aeration and absorbing water. Animal sources include the products of the slaughter of animals. Bloodmeal, bone meal, hides, hoofs, and horns are typical components.[1] Organic fertilizer usually contain fewer nutrients, but offer other advantages as well as appealing to environmentally friendly users.

Other elements: calcium, magnesium, and sulfurEdit

Calcium is supplied as superphosphate or calcium ammonium nitrate solutions.

ApplicationEdit

Fertilizers are commonly used for growing all crops, with application rates depending on the soil fertility, usually as measured by a soil test and according to the particular crop. Legumes, for example, fix nitrogen from the atmosphere and generally do not require nitrogen fertilizer.

Liquid vs solidEdit

Fertilizers are applied to crops both as solids and as liquid. About 90% of fertilizers are applied as solids. Solid fertilizer is typically granulated or powdered. Often solids are available as prills, a solid globule. Liquid fertilizers comprise anhydrous ammonia, aqueous solutions of ammonia, aqueous solutions of ammonium nitrate or urea. These concentrated products may be diluted with water to form a concentrated liquid fertilizer (e.g., UAN). Advantages of liquid fertilizer are its more rapid effect and easier coverage.[1] The addition of fertilizer to irrigation water is called "fertigation".[14]

Slow- and controlled-release fertilizers Edit

Slow- and controlled-release involve only 0.15% (562,000 tons) of the fertilizer market (1995). Their utility stems from the fact that fertilizers are subject to antagonistic processes. In addition to their providing the nutrition to plants, excess fertilizers can be poisonous to the same plant. Competitive with the uptake by plants is the degradation or loss of the fertilizer. Microbes degrade many fertilizers, e.g., by immobilization or oxidation. Furthermore, fertilizers are lost by evaporation or leaching. Most slow-release fertilizers are derivatives of urea, a straight fertilizer providing nitrogen. Isobutylidenediurea ("IBDU") and urea-formaldehyde slowly convert in the soil to free urea, which is rapidly uptaken by plants. IBDU is a single compound with the formula (CH3)2CHCH(NHC(O)NH2)2 whereas the urea-formaldehydes consist of mixtures of the approximate formula (HOCH2NHC(O)NH)nCH2.

Besides being more efficient in the utilization of the applied nutrients, slow-release technologies also reduce the impact on the environment and the contamination of the subsurface water.[15] Slow-release fertilizers (various forms including fertilizer spikes, tabs, etc.) which reduce the problem of "burning" the plants due to excess nitrogen. Polymer coating of fertilizer ingredients gives tablets and spikes a 'true time-release' or 'staged nutrient release' (SNR) of fertilizer nutrients.

Controlled release fertilizers are traditional fertilizers encapsulated in a shell that degrades at a specified rate. Sulfur is a typical encapsulation material. Other coated products use thermoplastics (and sometimes ethylene-vinyl acetate and surfactants, etc.) to produce diffusion-controlled release of urea or other fertilizers. "Reactive Layer Coating" can produce thinner, hence cheaper, membrane coatings by applying reactive monomers simultaneously to the soluble particles. "Multicote" is a process applying layers of low-cost fatty acid salts with a paraffin topcoat.

Foliar applicationEdit

Foliar fertilizers are applied directly to leaves. The method is almost invariably used to apply water-soluble straight nitrogen fertilizers and used especially for high value crops such as fruits.[1]

File:Fertilizer-Burn.jpg

Chemicals that affect nitrogen uptakeEdit

Various chemicals are used to enhance the efficiency of nitrogen-based fertilizers. In this way farmers can limit the polluting effects of nitrogen run-off. Nitrification inhibitors (also known as nitrogen stabilizers) suppress the conversion of ammonia into nitrate, an anion that is more prone to leaching. 1-Carbamoyl-3-methylpyrazole (CMP), dicyandiamide, and nitrapyrin (2-chloro-6-trichloromethylpyridine) are popular. Urease inhibitors are used to slow the hydrolytic conversion of urea into ammonia, which is prone to evaporation as well as nitrification. The conversion of urea to ammonia catalyzed by enzymes called ureases. A popular inhibitor of ureases is N-(n-butyl)thiophosphoric triamide (NBPT).

Overfertilization Edit

Careful fertilization technologies are important because excess nutrients can be as detrimental.[16] Fertilizer burn can occur when too much fertilizer is applied, resulting in drying out of the leaves and damage or even death of the plant.[17]Script error Fertilizers vary in their tendency to burn roughly in accordance with their salt index.[1]

Statistics Edit

File:Fertilizer consumption map Europe.png

Conservative estimates report 30 to 50% of crop yields are attributed to natural or synthetic commercial fertilizer.[2][3] Global market value is likely to rise to more than US$185 billion until 2019.[4] The European fertilizer market will grow to earn revenues of approx. €15.3 billion in 2018.[5]

Data on the fertilizer consumption per hectare arable land in 2012 are published by The World Bank.[6] For the diagram below values of the European Union (EU) countries have been extracted and are presented as kilograms per hectare. The total consumption of fertilizer in the EU is 15.9 million tons for 105 million hectare arable land area[7] (or 107 million hectare arable land according to another estimate[8]). This figure equates to 151 kg of fertilizers consumed per ha arable land on average for the EU countries. Interestingly, mainly in those countries where fertilizers are consumed a lot also plant growth product are sold more than in others. (See P5 in thumbnail "Pesticide categories" maps on the right.)

File:Pesticide categories.PNG

The diagram displays the statistics of fertilizer consumption in western and central European counties from data published by The World Bank for 2012.

See also Edit

References Edit

External links Edit

Wikimedia Commons has media related to:

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.